CHROMATOGRAPHIC CHARACTERIZATION OF PHENOTHIAZINE dRUGS BY A REVERSED-PHASE THIN-LAYER TECHNIQUE

ABRAM HULSHOFF and JOHN H. PERRIN
Pharmaceutical Laboratories, University of Utrecht, Catharijnesingel 60, Utrecht (Thie Netherlands)

(First received February 5th, 1976; revised manuscript received March 24th, 1976)

Abstract

SUMMARY A reversed-phase thin-layer chromatographic technique was used for the characterization of 26 phenothiazine drugs. With two chromatographic systems having the same stationary phase and phase volume ratio, but mobile phases of different pH^{*}, all but two of the compounds could be identified. \boldsymbol{R}_{F} values in the different systems were standardized by applying a reference compound to the plates next to each compound under investigation; the corrected R_{F} values were calculated from the differences in the R_{M} values of the compounds and the reference compound, and the theoretical R_{M} value of the reference. It was shown that R_{F} values for different chromatographic systems with the same stationary phase could be predicted with reasonable accuracy. The pH^{*} of the mobile phase, for which a maximum difference in R_{F} values was obtained for pairs of compounds, could also be calculated and corresponded well with the observed values.

INTRODUCTION

Numerous thin-layer chromatographic (TLC) procedures for the characterization of phenothiazines have been described ${ }^{1-9}$. Most workers used adsorption chromatography on silica gel for these drugs and a few ${ }^{1,8}$ used cellulose-coated plates. During reversed-phase thin-layer chromatographic (RP-TLC) experiments for the determination of the relative partition coeficients of some phenothiazines ${ }^{10}$, it became apparent that this technique could be useful for the separation and identification of these drugs and possibly of other groups of drugs. Reversed-phase techniques for the characterization of phenothiazines involving paper chromatography ${ }^{11-13}$ and highperformance liquid chromatography have been described ${ }^{14,15}$. Some of the workers ${ }^{12,14}$ pointed out the imporiance of the pH and composition of the mobile phase for the chromatographic behaviour of the drugs. In the work described here, the extent to which the R_{F} values of phenothiazines can be predicted when a RP-TLC method is used, in which disturbing adsorption phenomena have been proved to be absent, was investigated.

EXPERIMENTAL

Materials

Hydrochlorides of promazine, chlorpromazine, trifiupromazine and prometh-
azine were obtained from various commercial sources and recrystallized from isopropanol. All other phenothiazines in were gifts from manufacturers and were used as supplied. Oleyl alcohol (Schuchardt, Munich, G.F.R.) containing 92-96\% of cis-9-octadecen-1-ol was distilled ($135-140^{\circ} ; 0.05 \mathrm{~mm}$ Hg) and passed through a column of aluminium oxide (Merck, Darmstadt, G.F.R.). The density at 25° was $0.845 \mathrm{~g} / \mathrm{ml}$. Dioxan (Merck, "reinst") was freed from acid by passing it through a column of basic aluminium oxide (Merck). Distilled water was used throughout. Kieselguhr G (Merck) was used as supplied. All other materials were oî reagent grade.

Thin-layer chromatography

The method used was as described previously ${ }^{10}$. Kieselguhr $G(24 g)$ was shaken for 90 sec with a mixture of $1.25 \%(\mathrm{v} / \mathrm{v})$ oleyl alcohol, 7 ml acetone and dioxan to 60 ml . Glass plates ($20 \times 20 \mathrm{~cm}$) were coated with a $0.25-\mathrm{mm}$ layer using standard equipment. The volatile components of the solvent were allowed to evaporate at room temperature for at least 16 h . Then 0.3% solutions of the phenothiazines or their salts in methanol were made (if impossible, saturated solutions were prepared) and $1 \mu 1$ of the solutions was spotted on to the plates, in varying order, on a line 2 cm from the lower edge of the plate, at $1.5-\mathrm{cm}$ intervals. A migration of 10 or 15 cm was obtained by cutting the layer at 12 or 17 cm , respectively, from the lower edge. Each plate was placed in a chromatographic chamber that had been equilibrated for several hours with the mobile phase, the temperature being maintained at 25° throughout. The mobile phases were methanol-water mixtures. After development, the plates were dried at room temperature for 15 min and then sprayed with V^{5+} reagent ${ }^{1}$ (650 mg of ammonium vanadate +80 ml of concentrated sulphuric acid, water to 1000 ml) or with Dragendorff's reagent.

Measurement of dissociation constants

The concentration-dependent (acid) dissociation constants, ${ }_{s} K_{a}{ }^{c}$, of a number of phenothiazines in the 50% (w/w) methanol-water mixture were measured by the titration method described by Benet and Goyan ${ }^{16}$. This method was applied earlier ${ }^{17}$ for six phenothiazines with satisfactory results. The $\mathrm{pH}^{* * *}$ meter (Metrohm Präzisions E510 pH meter) was standardised against methanol-water mixtures as described by Bates ${ }^{18}$ and Bates et al. ${ }^{19}$, using a Metrohm (EA121) combination glass electrode. A $50-\mathrm{g}$ amount of methanol-water mixture containing 0.1 M potassium chloride and $10^{-3} M$ drug was titrated at $25.0 \pm 0.1^{\circ}$ with the exclusion of light against $0.1-0.2 \mathrm{~N}$ sodium hydroxide solution or, hydrochloric acid, in at least 15 portions. The titrant, having the same methanol concentration as the test solution, was added from a 0.5 ml Metrohm (E457) microburette calibrated to 0.0001 ml . Nitrogen was bubbled through the magnetically stirred solution throughout the titration. The pH^{*} was read 1 min after each addition. Free bases were titrated against 0.1 or 0.2 N hydrochloric acid; hydrochlorides were titrated against 0.1 or 0.2 N sodium hydroxide solution. In

[^0]all other instances (maleates, etc.) the free base of the drug was prepared by extracting an alkaline suspension of the drug with dichloromethane (DCM); after washing the DCM layer with water it was filtered and evaporated under reduced pressure. The residual free base was dissolved in methanol and to an aliquot of the methanolic solution an equal weight of water was added and the mixture titrated against 0.1 or 0.2 N hydrochloric acid. The $\mathrm{p}\left({ }_{s} K_{a}{ }^{c}\right)$ value of dixyrazine was also determined in 30% (w/w) methanol.

THEORETICAL
It was shown in a previous paper ${ }^{10}$ that under the conditions of the thin-layer experiments as described above, adsorption of phenothiazines on the support (Kieselguhr G) does not occur to any measurable extent; that is, the chromatographic process is based entirely on partitioning of the compounds between the stationary phase (oleyl alcohol) and the mobile phase (methanol-water mixtures). For a certain methanol-water mixture as the mobile phase, the R_{M} of a basic compound can then be expressed by ${ }^{10}$

$$
\begin{equation*}
R_{M}=\log _{s} P+\log _{s} f+\log r \tag{1}
\end{equation*}
$$

where ${ }_{s} P=$ partition coefficient $[=$ the concentration in the stationary phase (in mole/l, divided by the concentration in the mobile phase (in mole/i)], $f={ }_{s} K_{a}{ }^{c} /$ $\left({ }_{s} K_{a}{ }^{c}+\left[H^{+}\right]_{s}\right)$, the fraction of the drug present as the free base ($\left[\mathrm{H}^{+}\right]_{s}=$ molal concentration of protonated solvent), and r is the phase vclume ratio, which is a constant for a given chromatographic system.

Substituting $R_{M}=\log \left(1 / R_{F}-1\right)$ in eqn. 1 yields, after rearrangement

$$
\begin{equation*}
\frac{R_{F}}{1-R_{F}}=\frac{1}{{ }_{s}^{P \cdot r}}+\frac{1}{{ }_{s} P \cdot r \cdot{ }_{s} K_{\mathrm{a}}{ }^{c}} \cdot\left[\mathrm{H}^{+}\right]_{s} \tag{2}
\end{equation*}
$$

Graphs of $R_{F} /\left(1-R_{F}\right)$ against [$\left.H^{\dagger}\right]_{S}$ should result in straight lines with slopes equal to $1 / s P \cdot r \cdot{ }_{s} K_{a}{ }^{c}$ and intercepts of $1 / s P \cdot r, R_{F}$ can also be written as a function of $\left[H^{+}\right]_{s}$ by rearrangement of eqn. 2 :

$$
\begin{equation*}
R_{F}=\frac{a_{0}+a_{1} \cdot\left[\mathbf{H}^{+}\right]_{s}}{1+a_{0}+a_{1} \cdot\left[\mathrm{H}^{+}\right]_{s}} \tag{3}
\end{equation*}
$$

where $a_{0}-1 / s P \cdot r$ and $a_{1}-1 / s P \cdot r \cdot{ }_{s} K_{a} c$.
For two compounds A and B , the difference in their R_{F} values, ΔR_{F}, can be expressed by

$$
\Delta R_{F}=R_{F A}-R_{F B}=\frac{a_{0_{\mathrm{A}}}+a_{1_{\mathrm{A}}}\left[\mathrm{H}^{+}\right]_{s}}{1+a_{0_{\mathrm{A}}}+a_{1_{\mathrm{A}}} \cdot\left[\mathrm{H}^{\dagger}\right]_{s}}-\frac{a_{0_{\mathrm{B}}}+a_{1_{\mathrm{B}}} \cdot\left[\mathrm{H}^{+}\right]_{s}}{1+a_{0_{\mathrm{B}}}+a_{1_{\mathrm{B}}} \cdot\left[\mathrm{H}^{+}\right]_{s}}
$$

A maximum (or minimum) value of $\Lambda R_{F}, \Delta R_{F_{\text {rax }}}$, is reached for $d\left(\Delta R_{F}\right) / d\left[H^{\dagger}\right]_{s}=0$. $\left[\mathrm{H}^{+}\right]_{\mathrm{s}}$ can be resolved from the resulting equation to give

$$
\begin{equation*}
\left[\mathrm{H}^{\div}\right]_{s}=\frac{-Y \pm \sqrt{\bar{Y}^{2}-4 X Z}}{2 X} \tag{4}
\end{equation*}
$$

where $X=\left(a_{1 A} \cdot a_{1 \mathrm{~B}}^{2}-a_{1 \mathrm{~B}} \cdot a_{1 \mathrm{~A}}^{2}\right) ; Y=2 a_{1 \mathrm{~A}} \cdot a_{1 \mathrm{~B}}\left(a_{0 \mathrm{~B}}-a_{0 \mathrm{~A}}\right)$; and $Z=2\left(a_{1 \mathrm{~A}} \cdot a_{0 \mathrm{~B}}-\right.$ $\left.a_{0,} \cdot a_{1 \mathrm{~L}}\right)+a_{1 \mathrm{~A}} \cdot a_{0 \mathrm{~B}}^{2}-a_{1 \mathrm{~B}} \cdot a_{\mathrm{D}_{\mathrm{A}}}^{2}+a_{1_{\mathrm{A}}}-a_{1 \mathrm{~g}}$.

The R_{M} value of the free base is a linear function of the methanol concentration, $C(\%, v / v)$, in the mobile phase ${ }^{20-22}$ and can be represented by

$$
\begin{equation*}
R_{M}=R_{M}+b C \tag{5}
\end{equation*}
$$

where $b=$ constant and $R_{M_{w}}=\log P+\log r(P=$ partition coefficient in the oleyl alco-hol-water system); $R_{M_{w}}$ can be considered as the R_{M} value with water as the mobile phase.

RESULTS

The phenothiazines were chromatographed with a series of methanol-water

TABLE I
$R_{F} \times 100$ VALUES OF PHENOTHIAZINES FOR THREE METHANOL CONCENTRATIONS AND VARIOUS pH^{*} VALUES OF THE MOBILE PHASE

Compound	pH^{*} of the mobile phase* using 30\% (w/w) methanal								p^{+*} of the mobile phase**			
	7.09	7.29	7.50	F^{69}	8.01	8.09	8.68	10.63	7.10	7.32	7.51	7.76
Thiopropazate	6	5	4	4	4	3			22	16	12	9
Thiethylperazine	9	7	5	4	3	3			26	20	15	11
Trifluoperazine	10	7	5	4	3	3			32	23	16	12
Prochlorperazine	14	9	8	5	4	3			39	27	20	15
Butaperazine	17	13	10	7	5	5			47	34	26	21
Fluphenazine	23	18	15	11	9	8		5	57	44	32	29
Triflupromazine	26	19	14	8	5	4	1		60	47	31	22
Thioridazine	32	28	17	11	5	4	1		64	53	37	27
Perphenazine	33	22	21	14	11	11		8	62	48	39	34
Chlorpromazine	36	32	22	14	7	5	1		68	56	40	29
Perazine	40	33	26	19	13	12		6	70	58	45	38
Dixyrazine	43	34	31	22	17	15		10	72	61	50	44
Diethazine	49	37	31	21	11	8	4		75	69	49	39
Profenamine	55	41	34	24	13	9	3		79	73	55	43
Pecazine	55	44	37	23	13	10	4		79	68	55	45
Levomepromazine	56	44	36	24	14	10	5		80	70	55	43
Promethazine	57	45	37	25	15	12	6	3	78	69	52	41
Alimemazine	57	45	37	25	14	11	5		78	71	54	43
Thioproperazine	70	63	58	45	36	30		25	87	78	73	68
Methopromazine	71	64	58	43	26	21	11	3	87	80	72	62
Promazine	71	64	57	43	26	21	10	3	86	80	71	62
Acetophenazine	77	76	70	60	52	48		44	88	82	80	78
Aminopromazine	78	73	71	61	40	35	19	5	89	86	81	76
Propericiazinc	84	83	75	59	44	36	30	20	92	87	82	77
Mesoridazine	90	87	87	81	70	63	49	29	92	91	90	88
Oxomemazine	95	94	94	88	83	81	74	60	95	94	92	92

[^1]mixtures as the mobile phase. The methanol concentrations were 30,40 and 50% (w/w). At each methanol concentration, a number of ammonia-ammonium chloride buffer solutions with different pH^{*} " were used as the mobile phase. At "low" $\mathrm{pH}^{\text {" }}$ values, 0.5 or 0.2 M ammonia-ammonium chloride solutions were used, while at higher pH^{*} values 0.1 M solutions were used. pH^{*} values of about 10.6 were reached by adding 6 N ammonia (in the same methanol-water mixture) to a 0.1 M potassium chloride solution.

At least four different chromatograms were obtained of the phenothiazines with each mobile phase. The mean $h R_{F}\left(=R_{F} \cdot 100\right)$ values are shown in Table I. In Fig. 1 the $h R_{F}$ values of three compounds are plotted against the pH^{*} of the mobile phase [$50 \%(\mathrm{w} / \mathrm{w})$ methanol].

The concentration of ammonium chloride in the buffer solutions has, at lower pH^{*} values, a marked influence on R_{F}. Running chromatograms with mobile phases

using	40\%	w/w)	nethanol	$p H^{*}$	of the	mobile	hase*	usin	50\%	(w/w)	methan		
8.01	8.23	8.64	10.60	6.84	7.12	7.48	7.61	7.90	8.20	8.38	8.78	9.02	10.50
9	9		9	47	40	30	29	27	25	25			25
9	7		6	56	48	30	27	22	20	19			18
10	9		6	63	54	35	34	25	22	22			20
12	10		8	68	58	36	34	27	24	24			22
16	14		11	72	63	44	42	35	32	31			31
24	22		19	74	66	55	54	48	47	47			46
15	10	5	4	79	73	49	49	30	22	18	16	14	13
17	9	5	1	80	75	55	53	33	22	19	11	9	8
28	27		22	80	74	57	56	50	47	47			47
19	12	7	4	81	76	55	54	34	25	21	17	14	14.
31	26		21	83	79	61	59	50	47	47			45
37	33		28	84	79	66	64	57	54	54			53
27	18	10	5	87	84	64	63	41	31	27	19	17	16
31	19	9	3	88	85	68	67	45	33	27	18	13	12
33	21	13	6	89	86	69	66	47	37	32	25	21	21
32	22	13	7	89	87	68	68	47	37	33	26	23	22
32	23	16	11	89	85	65	65	47	40	36	32	31	29
33	22	13	7	90	86	68	68	47	37	32	25	23	20
61	57		52	91	87	83	82	76	74	74			75
51	38	25	12	92	90	80	80	63	54	48	40	36	36
50	37	24	10	92	91	80	79	62	52	45	37	33	33
73	72		68	93	92	87	85	82	82	82			83
68	57	39	13	92	90	88	86	76	68	63	51	44	43
69	61	54	47	95	93	88	86	79	74	74			71
85	78	68	48	95	93	94	92	86	82	80	74	70	70
91	88		82	96	95	96	94	92	91	90			91

Fig. 1. Effect of pH^{*} of the mobile phase $\left[50 \%\right.$ (w/w) methanol] on the $h R_{F}$ values of mesoridazine (O), methopromazine (\triangle) and butaferazine (\square). Each point represents the mean value of at least four $h R_{F}$ measurements. The curves have been drawn to fit eqn. 3 using the values of a_{0} and a_{1} from Table iill.
consisting of 0.1 M ammonia-ammonium chloride buffers in 50% (w/w) methanol with pH^{*} values lower than 7.6 resulted in $\dot{\vec{k}}_{F}$ valucs lower than the theoretical values ${ }^{10}$. Increasing the buffer concentration to 0.2 M or, at the lowest pH^{*} values, to 0.5 M gave more reproducible R_{F} values, which corresponded well with the theoretical values (eqn. 3). The reproducibility of the R_{F}, R_{M} and ΛR_{M} values was investigated using for mobile phases 30% (w / w) methanol buffer solutions of low pH^{*} (7.09) and of high pH^{*} (10.6), and a $50 \%(\mathrm{w} / \mathrm{w})$ methanol-buffer solution of high $\mathrm{pH}^{*}(10.5)$. The results are shown in Table II.

For a number of phenothiazines, the dissociation constants in methanol-water mixtures were calculated ${ }^{*}$ (eqn. 2) from the values of the intercepts and the slopes of the graphs of $R_{F} /\left(1-R_{F}\right)$ against $\left[H^{+}\right]_{s}$. The results for 50% methanol are shown in Table III, together with the $\mathrm{p}\left({ }_{s} K_{a}{ }^{c}\right)$ values that were found by titration. Plots of $R_{F} /\left(1-R_{F}\right)$ against $\left[H^{+}\right]_{s}$ for three compounds with 30% (w/w) methanol are shown in Fig. 2.

The time needed for a migration of 10 cm was about 45 min for all of the mobile phases. Detection limits were estimated to be $0.5-1 \mu \mathrm{~g}$. About $100 \mu \mathrm{~g}$ chlorpromazine, after application to the plate, was chromatographed with 50% (w/w) methanol ($\mathrm{pH}^{*}=10.5$). After development, the chlorpromazine zone was collected

[^2]TABEE II
VALUES OF $h R_{F}, R_{s}$ AND $4 R_{M}$ AND THEIR STANDARD DEVIATIONS (s) FOR SOME PHENOTHLAZINES
The compounds given in italics were applied next to each other on the plates.

30% (w/w) methanol, $\mathrm{pH}^{*}=7.09^{* *}$							
Compound	n^{*}	$h R_{F}$	s	R_{M}	s	$\Delta R_{s}{ }^{8}$	s
Prochlorperazine	8	13	2.1	0.81	0.072	0.91	0.059
Butaperazine	8	17	2.9	0.69	0.085	0.78	0.029
Perphenazine	14	33	5.4	0.31	0.107	0.44	0.036
Perazine	8	40	5.3	0.19	0.095	0.29	0.048
Alimemazine	14	57	6.8	-0.13	0.122	0.00	0.000
Promethazine	14	57	6.6	-0.12	0.118	0.01	0.019
Promazine	14	71	4.3	-0.40	0.093	-0.27	0.039
Mesoridazine	8	90	1.9	-0.98	0.102	-0.87	0.046

30% (w/w) medhanol, $p H^{*}=10.63^{* * *}$

Compound	n^{*}	$h R_{F}$	s	R_{M}	s	$\Delta R_{M}^{s s}$	s
Dixyrazine	12	10	0.8	0.54	0.034	0.84	0.012
Propericiazine	12	20	0.8	0.60	0.022	0.50	0.017
Mesoridaziae	12	29	0.9	0.40	0.029	0.30	0.021
Acetophenazine	12	44	1.7	0.10	0.029	0.00	0.000

$50 \%(w / w)$ methanol, $p H^{*}=10.50^{* * *}$

Compound	n^{*}	$h R_{F}$	s	R_{M}	s	$\Delta R_{s} 53$	s	
Trifupromazine	8	13	0.9	0.84	0.037	0.90	0.025	
Butaperazine	12	31	1.3	0.35	0.025	0.40	0.021	
Perazine	12	45	1.9	0.08	0.032	0.13	0.015	
Dixyrazine	12	53	2.0		-0.05	0.035	0.00	0.000
Propericiazine	12	71	1.9	-0.39	0.039	-0.34	0.011	
Mesoridazine	12	70	1.8	-0.43	0.039	-0.38	0.022	
Acetophenazine	12	83	1.3	-0.68	0.038	-0.63	0.011	
Oxomemazine	8	91	1.0	-1.02	0.058	-0.98	0.029	

[^3]and eluted with 0.1 N hydrochloric acid. The suspension was centrifuged and the resulting clear solution was made alkaline and shaken with DCM. The DCM layer was washed with water and extracted with 30 ml of $0.1 N$ hydrochloric acid; the ultraviolet absorbance spectrum of the aqueous layer had the ultraviolet absorbance characteristics of chlorpromazine.

DISCUSSION

Differences between the R_{F} values of the phenothiazines in reserved-phase chromatography are caused by differences in partition coefficients or in $\mathrm{P}\left({ }_{s} K_{a}{ }^{c}\right)$ values, or both. It can be seen (Table 1) that the R_{F} values of all 26 phenothiazines are

TABEEIII
SLOPES AND INTERCEPTS OF GRAPHS OF $R_{F} / 1-R_{F}$ AGAINST [H $\left.{ }^{+}\right]_{S}$ AND THE $p\left(K_{g} c\right)$ YALUES IN 50% (w/w) METHANOL FROM CHROMATOGRAPHIC AND TITRIMETRIC DATA
a_{3} and $a_{1}=$ intercept and slope, respectively, of the plots of $R_{F} /\left(1-R_{F}\right)$ versus $\left[H^{+}\right]_{s} ; s=$ standard deviation; $n=$ number of measurements; four chromatograms were obtained for each compound with all mobile phases.

Compound	a_{0}	s	a_{1}	s	n	$p\left({ }_{s} K_{a}{ }^{c}\right)$	
						Chromatography.	Titration
Mesoridazine	2.44	0.099	2.18-10	$1.1 \cdot 10^{7}$	24	8.0	8.22
Pecazine	0.17	0.059	$4.61 \cdot 10^{7}$	$1.2 \cdot 10^{6}$	36	8.4	8.30
Propericiazine	. 2.31	0.067	$6.60 \cdot 10^{7}$:	6.4-10 ${ }^{6}$	16.	7.5	7.46
Thioridazine	0.11	0.038	$2.19 \cdot 10^{7}$	$6.8 \cdot 10^{5}$	28	8.3	8.62
Butaperazine	0.40	0.037	$8.80 \cdot 10^{6}$	$3.2 \cdot 10^{5}$	24	7.3	7.23
Dixyrazine	1.09	0.094	$1.77 \cdot 10^{6}$	$7.9 \cdot 10^{5}$	24	7.2	7.15
Perphenazine	0.79	0.108	$1.35 \cdot 10^{7}$	$9.5 \cdot 10^{5}$	24	7.2	7.01
Prochlorperazine	0.23	0.051	$7.95 \cdot 10^{6}$	$4.3 \cdot 10^{5}$	24	7.5	7.23
Chlorpromazine	0.14	0.029	$2.33 \cdot 10^{7}$	$5.6 \cdot 10^{5}$	32	8.2	8.24*
Promazine	0.41	0.079	$7.54 \cdot 10^{7}$	$3.1 \cdot 10^{6}$	28	8.3	$8.37{ }^{*}$
Triflupromazine	0.11	0.032	$1.95 \cdot 10^{7}$	$6.2 \cdot 10^{5}$	32	8.2	$8.13{ }^{*}$
Methopromazine	0.48	0.092	$7.61 \cdot 10^{7}$	$3.6 \cdot 10^{6}$	28	8.2	8.20 *
Levomeprenrazine	0.25	0.049	$4.00 \cdot 10^{7}$	$1.9 \cdot 10^{6}$	28	8.2	8.29
Promethazine	0.39	0.042	$3.24 \cdot 10^{7}$	$1.6 \cdot 10^{6}$	28	7.9	7.94
Diethazine	0.16	0.037	3.44-10 ${ }^{7}$	1.4-10 ${ }^{6}$	28	8.3	8.31
Profenamine	0.12	0.043	$4.23 \cdot 10^{7}$	$1.7-10^{6}$	28	8.6	8.69

*Results from ref. 17.

Fig. 2. $R_{F} /\left(1-R_{F}\right)$ as a linear function of $\left[H^{+}\right]$s of the mobile phase $[30 \%$ (w/w) methanol] for mesoridazine (O), thioproperazine (Δ) and dixyrazine (\square).
highly dependent on the pH^{*} and methanol concentration of the mobile phase. There is no mobile phase with which all of the phenothiazines have different R_{F} values. However, the combination of $30 \%(\mathrm{w} / \mathrm{w})$ methanol ($\mathrm{pH}^{*}=7.09$) and $50 \%(\mathrm{w} / \mathrm{w})$ methanol $\left(\mathrm{pH}^{*}==10.5\right)$ makes identification within this group possible for almost all compounds. Three drugs (pecazine, levomepromazine and alimemazine) were difficult to separate for all compositions and $\mathrm{p}^{\mathrm{H}}{ }^{*}$ of the mobile phase. Obviously, these compounds have about the same partition coefficients and $\mathrm{p}\left({ }_{s} K_{a}{ }^{c}\right)$ values. Of these, levomepromazine is characterized by the blue colour after spraying with V^{5+} reagent; the other two give an orange spot. Therefore, only alimemazine and pecazine are difficult to distinguish from one another by these two svstems. Their separation could possibly be achieved by using another stationary phase of different polarity, for instance an n-alkane. Methopromazine and promazine were also very close together on almost all of the chromatograms, but, like the levomepromazine-alimemazine pair, methopromazine gives a blue spot and promazine an orange spot with V^{5+} reagent. This analogy is not surprising: methopromazine is promazine plus a $\mathrm{CH}_{3} \mathrm{O}$ group at the C_{2} position and levomepromazine is alimemazine plus a $\mathrm{CH}_{3} \mathrm{O}$ group at the C_{2} position. For both compounds the difference in R_{F} values is greatest with $50 \%(\mathrm{w} / \mathrm{w})$ methanol ($\mathrm{pH} \mathrm{H}^{*}=10.5$). From the values in Table II , it is clear that the reproducibility of R_{F} values is better for mobile phases with higher pH^{*} values and that in all instances the reproducibility is best for extreme R_{F} values. The standard deviations of the R_{M} values also are lower for mobile phases with higher pH^{*} values, but for a given chromatographic system there is no significant difference in the standard deviations of R_{M} values of very different magnitude. Variation in the R_{M} values of a compound obtained from different chromatograms must therefore be the result of plate to plate differences in the chromatographic system that cause a change in R_{M} that is equal in magnitude for all compounds. At high pH^{*} values, variability in R_{M} may be caused by a variation from plate to plate in the phase volume ratio. At lower pH^{*} values, a second source of error is probably the dissociation equilibrium of the drug in the mobile phase. The chromatographic conditions for compounds on one plate, however, seem to be much less prone to variation, because the standard deviations of the ΔR_{M} values* are much smaller than the standard deviations of the R_{M} values. The error in the ΔR_{M} value of two compounds can be decreased even more by applying these compounds next to each other on the plates, as can be seen from Table II. The best characterization of the chromatographic behaviour of compounds in RP-TLC therefore appears to be obtained when a plate reference compound is used; this compound should be applied next to each of the compounds under test and the ΔR_{M} values, between the compounds under investigation and this reference compound, determined. Addition of $A R_{M}$ to the (standard) R_{M} value of the reference compound gives the corrected R_{M} values, from which the corrected R_{F} values (R_{F} corr.) can be calculated. Promethazine for 50% (w/w) methanol, methopromazine for 40% (w / w) methanol and dixyrazine for 30% (w / w) methanol were chosen as reference compounds. The R_{F} values of these compounds, at different pH^{*} values of the mobile phase, do not become extremely high or low at extremes of pH^{*}; also, their chromatographically determined $\mathrm{p}\left({ }_{s} K_{a}{ }^{c}\right)$ values are in excellent agreement with those ob-

[^4]tained by titration (Table IV). The theoretical (standard) $R_{F}, R_{F} /\left(1-R_{F}\right.$) and R_{s} values (calculated by using eqns. 2 and 3) at different pH^{*} values for each of these compounds are presented in Table IV.

From the $R_{F} /\left(1-R_{F}\right)$ vaiues of the drugs, calculated from the corrected R_{F} values obtained with two mobile phases of different pH^{*} s, the values of the slope (a_{0}) and intercept $\left(a_{1}\right)$ of the graphs of $R_{F} /\left(1-R_{F}\right)$ against $\left[H^{+}\right]_{s}$ can be calculated, as well as R_{F} values for all mobile phases thta have the same methanol concentration but different pH^{*} values. Examples are given in Table V. The calculated $h R_{F}$ values, ob-

TABLE IV
CALCULATED VALUES OF $h R_{F}, R_{F} /\left(1-R_{F}\right)$ AND R_{H} OF THEREFERENCE COMPOUNDS FOR THREE METHANOL CONCENTRATIONS
$I=$ ionic strengih (molality scale).
50% (w/w) methanol, promethazine*

$p F^{*}$	I	$h R_{\mathrm{F}}$	$R_{\mathrm{F}} / I-R_{\mathrm{F}}$	$\boldsymbol{R}_{\mathrm{M}}$
6.84	0.5	89.4	8.453	-0.927
7.12	0.5	82.2	4.629	-0.666
7.48	0.2	67.3	2.060	-0.314
7.61	0.2	61.9	1.628	-0.212
7.90	0.1	49.2	0.968	0.014
8.20	0.1	40.4	0.677	0.159
8.38	0.1	36.6	0.578	0.238
8.78	0.1	31.6	0.462	0.336
9.02	0.1	30.0	0.429	0.368
10.5	0.1	27.9	0.387	0.413

$40 \%(w / w)$ methanol, methopromazine**

$p H^{*}$	I	$h R_{F}$	$R_{F} / I-R_{F}$	R_{s}
7.10	0.5	87.6	7.040	-0.848
7.32	0.2	79.8	3.952	-0.597
7.51	0.2	72.4	2.618	-0.18
7.76	0.2	60.8	1.554	-0.191
8.01	0.2	48.9	0.958	0.018
8.23	0.1	38.3	0.620	0.208
8.64	0.1	26.3	0.357	0.448
10.60	0.1	16.0	0.191	0.719

30% (w/w) methanol, dixyrazine ${ }^{* *}$

$p H^{*}$	$: I$	$h R_{\mathrm{F}}$	$R_{\mathrm{F}} / I-R_{\mathrm{F}}$	R_{M}
7.09	0.5	43.4	0.767	0.115
7.29	0.5	34.8	0.534	0.272
7.50	0.5	27.6	0.382	0.418
7.59	0.2	22.0	0.281	0.551
8.01	0.1	17.1	0.206	0.686
8.09	0.1	16.0	0.191	0.720
8.68	0.1	13.1	0.151	0.822
10.63	0.1	12.1	0.137	0.863

[^5]tained with a third mobile phase, correspond reasonably well with the experimentally determined and corrected $h R_{F}$ values, and the $\mathrm{P}\left({ }_{s} K_{a}{ }^{c}\right)$ values, calculated from a_{0} and a_{1}, are in good agreement with those in Table III. For a certain mobile phase, the pH^{*} at which ΔR_{F} for two compounds will be maximal $\left(\Lambda R_{F_{\max }}\right)$ can be calculated from eqn. 4. The necessary values of a_{0} and a_{1} of both compounds can be determined by obtaining two chromatograms of the compounds (and the reference) with mobile phases of different pH^{*}. For instance, using the corrected $\bar{h} R_{F}$ values (Table V) of pecazine and prochlorperazine with 50% (w/w) methanol ($\mathrm{pH}^{*}=10.48$ and 7.38), a_{0} and a_{1} for both compounds were calculated; for pecazine $a_{j i}=0.206$ and $a_{1}=4.22 \cdot 10^{7}$, and for prochlorperazine $a_{0}=0.256$ and $a_{1}=7.36 \cdot 1 \mathrm{y}^{6}$. Inserting these values in eqn. 10 yields $\left[\mathrm{H}^{+}\right]_{s}=6.90 \cdot 10^{-8}$. For a 0.5 M ammonia-ammonium chloride buffer solution in $50 \%(\mathrm{w} / \mathrm{w})$ methanoi, the activity coefficient of H^{+}is 0.58 ; the pH^{*} of the mobile phase at which ΔR_{F} will have a maximum value is therefore 7.40 and the calculated ΔR_{F} at $\mathrm{pH}^{*} 7.40$ is 0.38 . The observed ΔR_{F} value at $\mathrm{pH}^{*}=7.38$ (Table V) is 0.37. At $\mathrm{pH}^{*}=7.12 \Delta R_{F}$ is 0.28 , and at $\mathrm{pH}^{*}=7.48 \Delta R_{F}$ is 0.33 (Table I). The calculated values of $\Delta R_{F_{\max }}$ and the $\mathrm{pH} *$ at which $\Delta R_{F_{\mathrm{max}}}$ is reached correspond with the observed values.
$\Delta \boldsymbol{R}_{\mathrm{F}_{\text {rax }}}$ for two compounds can thus be calculated from the corrected $\boldsymbol{R}_{\boldsymbol{F}}$ values on two different chromatograms. However, when several compounds are to be separated on the same chromatogram, the use of eqn. 4 for all of the pairs of compounds would be cumbersome. It is then much more convenient to calculate the $\boldsymbol{R}_{\boldsymbol{F}}$ values of each compound at different pH^{*} values, again by inserting in eqn. 2 the $\boldsymbol{R}_{\boldsymbol{F}}$ values of the compound on two different chromatograms. The most suitable $\mathrm{pH} *$ for the separation of the compounds can then be determined from the well known \boldsymbol{R}_{F} versus pH graphs.

Another question is whether or not the R_{F} value of a compound can be estimated at other methanol concentrations in the mobile phase, after having measured R_{F} with a mobile phase of a given methanol concentration. R_{M} values of very lipophilic compounds decrease at a higher rate with increasing methanol concentration compared with R_{M} values of less lipophilic compounds.

It has been found experimentally ${ }^{27}$ for a series of phenothiazines and benzodiazepines that the slope, b, of the lines $R_{M}=R_{M_{w}}+b C$ (eqn. 5) ${ }^{*}$ is a linear function of the R_{M} value at a certain methanol concentration:

$$
\begin{equation*}
b=\alpha+\beta R_{\mathrm{M}} \tag{б}
\end{equation*}
$$

where α and β are constants whose values depend on the methanol concentration of the mobile phase. At zero methanol concentration the equation becomes

$$
\begin{equation*}
b=a+B R_{M,} \tag{7}
\end{equation*}
$$

(the $R_{M_{w}}$ values were obtained by extrapolation of the lines $R_{M}=R_{M_{w}}+b C$ to zero methanol concentration).

Values of α and β at different methanol concentrations are shown in Table VI. From the corrected $h R_{F}$ values of a certain compound, obtained for instance with two

[^6]TABLE V MOBILE PHASES CONTAINING 50% (w/w) METHANOL.
$\mathrm{p}\left(K_{n}{ }^{c}\right)$ AND $h R_{F}$ VALUES OF SOME PHENOTHIAZINES, CALCULATED FROM THE CORRECTED $h R_{F}$ VALUES ($h R_{F}$ corr,) WITH TWO
The compounds were applied on the plates in the same order as they are presented here.

Compound	50\%	(w/w) mel						30\% (131)	methanol			
	pHI*	$=10.48^{*}$		$=8.03{ }^{*}$		$=7.38^{* *}$	$p\left({ }_{1} K_{a}{ }^{\text {c }}\right.$)	$p H^{*}=$	$p H^{*}=$		$=7.37^{\circ}$	
	$4 R_{R}$	$h R_{F}$ corr.	H_{R}.	$h R_{F}$ corr.	$h_{1} R_{p}$	$h R_{P}$ corr.		$\begin{aligned} & 7.38 \\ & h R_{\text {calc }} \end{aligned}$	$\begin{aligned} & 8.03 \\ & h R_{F \text { cnte. }} . \end{aligned}$	$h R_{F}$	$h^{\prime} R_{p \text { corr. }}{ }^{* *}$	$h R_{P \text { cutc. }}$?
Mesoridazine	66.5	67.3	87	85.4	93	93.8	8.109	96^{04}		86	85.4	90
Promethazine	27.5		48.5		70.5					40	40.4	30
Pecazine	17	17.2	49	45.6	74	76.4	8.401	7811		37.5	36.3	35
Thioridazine	6.5	6.9	35	33.3	58	63.8	8.691	70^{11}		16	16.2	9
Promethazine	26.5		47		68							
Dixyrazine	49.5	51.2	55.5	53.6		70.8	7.301		57081	33	31.9	35
Perphenazine	44	43.8	48.5	47.1	56	63.0	7.2019		49000	20	19.5	23
Promethazine	28		46.5		67							
Prochlorperazine	20.5	20.4	24.5	23.5	37.	44.0	7.5809		26800	8.5	8.3	10
Profenamine	8	8.1	45	42.6	73	76.3	8.691	78^{18}		41	40.8	27
Promethazine	27.5		47.5		69.5							
Triflupromazine	11	11.2	31.5	29.5	54.5	58.8	8.28	6314		17	16.9	15

${ }^{*}$ Ionic strength $=0.1$.
$* *$ Dixyrazine was used as the reference compound in the same way as promethazine for the $50 \%(w / w)$ methanol chromatograms. The $h R_{r}$ value of dixyrazine is one of the four measured $h R_{F}$ values on the plate.
$\because h R_{r}$ values for $30 \%(\mathrm{w} / \mathrm{w})$ methanol $\left(\mathrm{pH}^{\star}=7.37\right)$ were estimated from two corrected $h R_{F}$ values for $50 \%(\mathrm{w} / \mathrm{w})$ methanol.
Calculated with $h R_{F}$ values at $\mathrm{pH}^{*}=10.48$ and 8.03 .
${ }^{\prime \prime}$ Calculated with $h R_{F}$ values at $\mathrm{pH}^{\prime \prime}=10,48$ and 7.38 .

TABLEVI

COEFFICIENTS AND STATISTICAEDATA OF THE CORRELATIONS $b=\alpha+\beta R_{M}$ s_{a} and $s_{\beta}=$ standard deviations of α and β, respectively; $n=$ number of compounds whose R_{M} values are included; $r=$ correlation coefficient; $s=$ standard deviation of correlation.

Methanol $(\%, w / w)$	α	s_{α}	β	s_{β}	n	r	s
0	-0.0208	0.0006	-0.0089	0.0002	26	0.991	0.0015
30	-0.0306	0.0005	-0.0131	0.0095	26	0.983	0.0021
40		-0.0361	0.0005	-0.0152	0.0007	26	0.973
50	-0.0435	0.0007	-0.0184	0.0011	26	0.960	0.0027

50% (w/w) methanol buffers [$57.98 \%(\mathrm{v} / \mathrm{v})$] of different pH^{*} values, the $h R_{F}$ values with a 30% (w/w) methanol buffer [36.20% (v/v)] can be estimated by calculating a_{0} and a_{1} for that compound at 50% (w/w) methanol. The (corrected) R_{M} value at high pH^{*} can then be inserted in the equation (Table VI)

$$
b=-0.0435-0.0184 R_{M}
$$

Substitution of the values of b and R_{M} in eqn. 5 gives the value of R_{M}, and the R_{M} value of the free base with 30% (w/w) methanol can be calculated. From a_{0} and a_{1} at 50% (w/w) methanol, $\mathrm{p}\left({ }_{s} K_{a}{ }^{c}\right)$ in 50% (w/w) methanol can be calculated. The difference between $\mathrm{p}\left({ }_{s} K_{a}{ }^{c}\right)$ in $50 \%(\mathrm{w} / \mathrm{w})$ methanol and $\mathrm{p} K_{a}=$ in water for phenothiazines has been found ${ }^{17,28}$ (Table III) to range roughly from 0.9 to 1.2 , with a mean value of 1.1. Assuming, as a first approximation, a linear decrease in $p\left({ }_{s} K_{a}{ }^{c}\right)$ with the methanol concentration ${ }^{*}$, the $\mathrm{p}\left({ }_{s} K_{a}{ }^{c}\right)$ value of the compound in 30% (w/w) methanol can be estimated by adding 0.4 to the $\mathrm{p}\left({ }_{s} K_{a}{ }^{c}\right)$ value in 50% (w/w) methanol. From the R_{M} value at high $\mathrm{pH} *$ and $\mathrm{p}\left({ }_{s} K_{\sigma}^{*}{ }^{*}\right)$ [both in $30 \%(\mathrm{w} / \mathrm{w})$ methanol] the value of a_{1} for 30% (w/w) methanol can be calculated, and with the values of a_{0} and a_{1} so obtained the \boldsymbol{R}_{F} values of the drug for $30 \%(\mathrm{w} / \mathrm{w})$ methanol at different pH * values can be calculated (eqn. 3). Examples are given in Table V. For most compounds, the estimated $h R_{F}$ values are close to the observed $h R_{F}$ values. In some instances, it may be heippful to change the phase:volume ratio, r, in order to obtain a better resoiution for two compounds. Changing $\log r$ of the chromatographic system (by changing the oleyl alcohol concentration in the impregnating mixture) results in an equal absolute change in the R_{M} values of both compounds. Changes in R_{M} will cause a maximal shift in R_{F} at R_{M} values around $R_{M}=0\left(R_{F}=0.5\right)$. For instance (Table I), in the system oleyl alcohol $[1.25 \%(v / v)$ in the impregnating mixture $]-30 \%(\mathrm{w} / \mathrm{w})$ methanol ($\mathrm{pH}^{*}=7.29$), the $h R_{F}$ values of propericiazine and mesoridazine are 83 and 87 , respectively. Increasing log r by 0.75 , that is, making the oleyl alcohol concentration in the impregnating mixture about $7 \%(\mathrm{v} / \mathrm{v})^{* *}$, results in R_{M} values of 0.06 for

[^7]propericiazine and -0.08 for mesoridazine. The $h R_{F}$ values are then 46.5 and 54.5 , respectively, and ΔR_{F} will have become twice as great. However, it was found that the detection is less sensitive at higher phase volume ratios. A considerable advantage of the reversed-phase method, as described above, is that two chromatograms of each compound under investigation and a reference compound are sumicient to predict with reasonable accuracy the \boldsymbol{R}_{F} values for the compounds in chromatographic systems that have the same stationary phase (but not necessarily the same loading) and any mobile phase consisting of methanol-water mixtures of a certain pH^{*}. It is also possible"to predict for which pH^{*} of a certain mobile phase the maximum difference in R_{F} is obtained. This same procedure should be applicable to any group of acidic or basic drugs for which adsorption on the support phase has been proved to be absent.

REFERENCES

1 A. de Leenheer, J. Chromatogr., 75 (1973) 79.
2 C. Korczak-Fabierkiewicz and G. Cimbura, J. Chromatogr., 53 (1970) 413.
3 F. Constantinescu and S. Enache, Arzneimittelstandardisierung, 19 (1969) 197.
4 D. Chandra, V. N. Shamm and R. L. Mital, Chemist-Analyst, 56 (1967) 100.
5 I. Zingales, J. Chromatogr., 31 (1967) 405.
6 J. Kofoed, C. Fabierkiewicz and G. H. W. Lucas, J. Chromarogr., 23 (1966) 410.
7 P. N. Moza and G. S. Khajuria, J. Chromatogr., 24 (1966) 261.
8 A. Noirfalise, J. Chromatogr., 19 (1965) 68.
9 I. Sunshine, Amer. J. Clin. Pathol., 40 (1963) 576.
10 A. Hulshoff and J. H. Perrin, J. Chromatogr., 120 (1976) 65.
11 T. J. Mellinger and C. E. Keeler, J. Pharm. Sci., 51 (1962) 1169.
12 H. V. Street, Acta Pharmacol. Toxicol., 19 (1962) 312.
13 J. Večerková, M. Şulcová and K. Kácl, J. Chromatogr. 7 (1962) 527.
14 P. J. Twitchett and A. C. Moffat J. Chromatogr., 111 (1975) 149.
15 W. C. Landgraf, Advan. Biochem. Psychopharmacol., 9 (1974) 357.
16 L. Z. Benet and J. E. Goyan, J. Pharm. Sci., 54 (1965) 1179.
17 A. Huishoff and J. H. Perrin, Pharm. Acta Helv., 51 (1976) 65.
18 R. G. Bates, Determination of pH, Wiley, New York, 2nd ed., 1973, p. 249.
19 R. G. Bates, M. Pabbo and R. A. Robinson, J. Phys. Chem., 67 (1963) 1833.
20 E. Soczewiński and C. A. Wachtmeister, J. Chromatogr., 7 (1962) 311.
21 W. Kemula and H. Buchowski, Rocz. Chem., 29 (1955) 718; C.A., 50 (1956) 6147e.
22 E. Soczewiniski and G. Matysik, J. Chromatogr., 32 (1968) 458.
23 R. G. Bates, Determination of pH, Wiley, New York, 2nd ed., 1973, p. 216.
24. Tabellenboekje ten Dienste van Laboratoria, D. B. Centen's Uitgeversmaatschappij, Hilversum, 18th Impression, 1962, p. 351.
25 P. S. Albright and L. J. Gosting, J. Amer. Chem. Soc., 68 (1946) 1061.
26 A. N. Martin, J. Swarbrick and A. Cammarata, Physical Pharmacy, Lea \& Febiger, Philadelphia, 2nd ed., 1969, p. 186.
27 A. Hulshoif and J. H. Perrin, unpublished results.
28 A. L. Green, J. Pharm. Pharmacol., 19 (1967) 10.

[^0]: *The subscript indicates that a methanol-water mixture is involved. ${ }_{s} K_{a}{ }_{0}$ is thus the disseciation constant in a methanol-water mixture; the superscript c indicates that the "constant" depends on the concentration (ionic strength) in the solution.
 ** $\mathbf{p H}$ meter readouts of measurements in methanol-water mixtures, after standardising the meter against a methanol-water buffer solution of the same methanol content, are denoted by the symbol pH*.

[^1]: ${ }^{*} 0.5 \mathrm{M}$ solutions were used at $\mathrm{pH}^{*}=7.09, \mathrm{pH}^{*}=7.29$ and $\mathrm{pH}^{*}=7.50 ; 0.2 M$ solutions at $\mathrm{pH}^{*}=7.69$; at all other pH^{*} values $0.1 M$ solutions were used.
 ${ }^{*} 0.5 M$ solutions were used at $\mathrm{pH}^{*}=7.10 ; 0.2 \mathrm{M}$ solutions at $\mathrm{pH}^{*}=7.32, \mathrm{pH}^{*}=7.51, \mathrm{pH}^{*}=7.76$ and $\mathrm{pH}^{*}=3.01$; at all other pH^{*} values 0.1 M solutions were used.
 ${ }^{* * *} 0.5 M$ solutions were used at $\mathrm{pH}^{*}=6.84, \mathrm{pH}^{*}=7.12 ; 0.2 M$ solutions at $\mathrm{pH}^{*}=7.48, \mathrm{pH}^{*}=7.61$; at all other pH^{*} values 0.1 M solutions were used.

[^2]: *Only R_{F} values between 0.1 and 0.85 and $\mathrm{pH} H^{*}$ values between $\left.p_{s} K_{c}{ }^{c}\right) \pm 1.5$ were included in the calculations. $\left[\mathrm{H}^{+}\right]_{s}$ was calculated from pH^{*}, using values for the activity coefficients of $\left[\mathrm{H}^{+}\right]$that ware calculated with the extended Debye-Hückel equation ${ }^{23}$ with the necessary constants from refs. 24-26.

[^3]: * $n=$ number of determinations.
 ** 0.5 M buffer solution.
 *** 0.1 M buffer solution.
 ${ }^{3} \Delta R_{M}=R_{M}$ of the compound minus R_{M} of alimemazine.
 ${ }^{*}{ }^{4} R_{R_{M}}=R_{M}$ of the compound minus R_{M} of acetophenazine.
 : $4 R_{M}=R_{M}$ of the compound minus R_{M} of dixyrazine.

[^4]: * ΔR_{M} values are defined here as the differences in R_{M} values of pairs of compounds on the same chromatogram.

[^5]: ${ }^{*} R_{F} /\left(1-R_{F}\right)=0.385+3.242 \cdot 10^{7} ; \mathrm{p}\left(K_{a}{ }^{c}\right)=7.93\left[p\left(K_{a}{ }^{c}\right)\right.$ by titration $\left.=7.94\right]$.
 ${ }^{*} R_{F} /\left(1-R_{F}\right)=0.189+5.266 \cdot 10^{7} ; \mathrm{p}\left(K_{a}{ }^{c}\right)=8.45\left[\mathrm{p}\left(K_{a} K_{a}{ }^{c}\right)\right.$ by titration $=8.441^{17}$.
 $* * R_{F} /\left(1-R_{F}\right)=0.137+4.885-10^{6} ; p\left({ }_{s} K_{a}{ }^{\sigma}\right)=7.55$ fp $\left({ }_{5} K_{a}{ }^{C}\right)$ by titration $=7.591$.

[^6]: * R_{s} and $R_{M_{w}}$ in eqn. 5 have been calculated from the R_{F} values of the non-protonated drugs.

[^7]: * It was shown ${ }^{17}$ that $\mathrm{p}\left({ }_{3} K_{a}{ }^{c}\right)$ does not change linearly with the methanol concentration; however, the error that is made by ignoring this non-linearity will in most instances be small compared with the ernor that is introduced by assuming a diference of 1.1 between $p\left(K_{s}{ }_{a}^{c}\right)$ in 50% (w/w) methanol and $\mathrm{p} K_{a}{ }^{c}$ in water for every compound.
 ** It is reasonabic to assume that $r=k \cdot C_{01}$ (ref. 10), where C_{01} is the conecntration of oleyl alcohol ($\%, v / v$) in the impregnating mixture and k is a constant. A change in $\log C_{01}$ therefore results in an equal change in $\log r$.

